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It is shown that the long-wavelength approximation introduces some relations between the dynamic
parameters which describe the orbit-lattice interaction. These relations, and also other relations which con-
nect some of these parameters to the static parameters, are obtained from symmetry considerations. They
reduce significantly the number of independent dynamic parameters, and this number is given for some
common groups. The relations are derived explicitly for the O group.

I. INTRODUCTION

ITHIN the crystal-field model, a paramagnetic

jon in substitution in a crystal is submitted to a
potential V set up by the electric charges of the ligand
ions. This potential satisfies the Laplace equation
V2V =0 and can then be expanded in terms of spherical
harmonics or, appropriately using the symmetry
properties of the system, in terms of linear combinations
of the spherical harmonics which belong to the ir-
reducible representations of the point group G of the
ion site. Calling ¥ (/,I's,a,8) the normalized combina-
tion of order ! which helongs to the Sth component of
the irreducible representation T', (the index ¢ dis-
tinguishes between various sets of combinations
associated with T',) this expansion is

V=2 C@lue)r'Y (,Tueb), €Y

l,e,a,8

where only the C coefficients depend on the environ-
ment. The static part of this potential, Vi, is clearly
invariant and can be written as

VSt:Z C(Z)Plgia) ] eerY(ZJ‘lg;a’)
l,a

=Z A (l:rllaya)y(l)rlﬂ,a) ) (2)

where I'y, is the trivial representation of G. The terms
A(,T14,a) are the usual static crystal-field “param-
eters” and they suffice to describe the static coupling
between the ion and its environment.! There are Ng
independent “parameters,” Ng being determined from
the symmetry group only. They can be calculated if new
approximations are introduced such as, for example,
the point-charge model for the ligand ions.

For the dynamic problem, one usually expands the
potential (1) in terms of normal modes of the cluster
consisting of the paramagnetic ion and its neighbors.:3
This expansion introduces ‘“dynamic parameters.” If
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only symmetry properties are used, there exists a
definite number of independent parameters, this number
depending on the number of neighbors introduced for
the determination of the normal modes.

We have already shown* that the long-wavelength
approximation enables us to fix the number of the
parameters to a value N, which depends on the sym-
metry only.

In this work, we shall show, using only the crystal-
field model and the long-wavelength approximation,
that the preceding dynamic parameters are in fact not
independent but are related by some linear relations
which depend on the symmetry only. We shall show
also that some of them are related to the static param-
eters. These relations thus will reduce significantly the
number of really independent dynamic parameters.

Before going into the details of the calculation, we
point out that if, from the formal point of view, the
long-wavelength approximation reduces the generality
of the conclusions, it remains excellent for most of the
phenomena resulting from the orbit-lattice coupling:
relaxation via direct process and, most of the time, via
Orbach process, static stress experiments, and ultra-
sonic experiments. In addition, for these relaxation
processes, the phonon spectrum is well described by the
Debye model, and the comparison between experi-
mental results and theoretical calculations is then more
significant.

In Sec. II, we show the existence of the relations
between the dynamic parameters, and we give the
outline of the method which permits us to get these
relations in specific cases. In Sec. III, we derive the
relations connecting static and dynamic parameters.
Finally, in Sec. IV, we apply these results to the case of
O symmetry.

II. RELATIONS BETWEEN DYNAMIC
PARAMETERS

The long-wavelength approximation is equivalent to
the assumption that the deformation of the lattice,
responsible for the orbit-lattice coupling, is uniform in
the vicinity of the paramagnetic ion, in a volume small
compared to A3, A being the wavelength of the active

4 M. Borg, R. Buisson, and C. Jacolin, Phys. Rev. B 1, 1917
(1970).
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thermal waves. This deformation can then be described
by the tensor oy, defined by

0Ar,
7y

(u77}=x!y’z)7 (3)

Tuy

where 7, and Ar, are, respectively, the coordinates of
the point and the displacement components in this
point.

Instead of expanding the potential (1) in terms of
normal modes of a cluster, we expand it in terms of
o(T's,b,8), the linear combinations of the Cartesian
components oy, which belong to the irreducible represen-
tation of the symmetry group G (the index & dis-
tinguishes between several sets belonging to the same
representation). This expansion gives the orbit-lattice
interaction,? the first-order term of which is

C(aa
Vor®= ¥ __,(J_;’Q
l,fz,ba.ﬂﬂ’ 6U(Pa'7b;:3,) eq

XU’(I‘Q',b,‘B')Y(l,Pa,a,,B) . (4)
The invariance of Vor under the symmetry operations
implies I'p=T.* and 8’=p. To get a more explicit
expression, we use the fact that the potential (1) set
up at the point (r,0,¢) by electric charges g; at point
(R;,0;,¢;) can be written, from the classical formula

(see, for instance, Ref. 5) and using the orthogonality
of the linear combinations of the spherical harmonics

dmwg; 1
2
l,j,e,q,82]41 R
XY*(,T,0,8; 0;,0) Y (I,To,a,8; 0,0). (5)

V(rb,9)=

The charges g; are not necessarily localized charges.
Equation (5) remains true if the electric charge of the
ligand ions is distributed around their nucleus. (We
have supposed that there is no “overlap” between the
ligands and paramagnetic ion charge distributions; see
the conclusion.) In that case, the sum Y_; must be re-
placed by an integral over the region occupied by the
electrons of the ligand, ¢; being the charge contained in
a small volume dr surrounding the point (R;8;,¢;) or,
more precisely, the density probability for the electrons:
V*(R;,05,0:)¥ (R;,0,,¢;)d.

The important point to be noted is that these
elementary charges in equilibrium positions can be
grouped in ‘“‘shells” which are invariant under the
operations of the point group. As the contributions of
the various “shells” to the potential are additive and
independent, we shall suppose from this point on that
there is only one “shell.” The sum Y_; is then replaced
by 2.j a sum over the charges of the shell s. The
orbit-lattice potential originated by the shell s can then

8 M. T. Hutchings, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic , New York, 1964), Vol. 16.
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be written as

47|'gjs 9
Vo P=2 —rt X { .
Lis 2141 aa,0.6 190 (T*,0,8)

1
XI: v (Z)Pa:a;ﬁ; 0187¢j0):|}
stH-l

eq
X Y(l,Fa,d,ﬁ 5 07¢)0(Pa*7b76)
= 2 V. (l,I‘a,a,b)

l,a,a,b,8
XY(ZJI“I?QJB; 0,¢)0'(Pa*’b,‘8) H (6)
where
4mgjs 9
Vs(@Taa,d)=>" 7t {
is 2141 (9a(T*,0,6)

1
X[ r* (l7ra:a;5; 0j87¢j3)]} . (7)
R H+1

Js eq

As the 2 ; in (7) is over all the “equivalent” (under
the symmetry operations) charges, V(/,T's,a,b) is in-
variant and belongs to the I'y, representation. It is easy
to see that only the invariant part of each term of the
sum contributes to the result, the noninvariant parts
being cancelled on the summation. It is then con-
venient to use the Dirac notation and, as the differential
operator 9/dc(T'*0,8) belongs to the representation
T',, to denote

O(le,b,8) = ———.
(Fe08) 9o (T'o*,b,8)

We can then rewrite (7) as

4mq;s
Vs(l,l‘a,a,b)= —qllrl”s Z Y(l'7rlgya,) O(I‘a:baﬁ)
2141

,a’

Y (',T14,0"; Ojso,is0) ,  (8)

R=R;s0

1
*
X IRH'IY (Z;Fa:a;ﬂ)>

where #, is the number of charges of the shell s, and
(Rjs0,0is0,¢5s0) are the equilibrium coordinates of any
one of the charges of the shell. To obtain this expression,
we have projected each term of (7) on the invariants
Y (U ,T14,0").

We shall now show that it is possible to transform
each term of the sum (8) into a product of two terms,
one of which depends on the symmetry only.

We first calculate the matrix element

&

From the definition (3) we have

! Y;’"> . )

RiH1

004y

a R, 0 a
=0y = =R, =R,Y,.
doyu OR, dR,

(10)
00 yu
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As the Yy form a complete set, we have

(i

1
Ovu ~—'—I]lm = Z <Yl’m"Ru| Yl"m”>
RH‘I v mt

1
X<qu'"” \Y/ Ylm>.
Rl+l

If a is a polar vector we can write, from the Wigner-
Eckart theorem,

<Yl’m, lRul Yl”m”> = m(llal”) (l’;ml ' Qy ll”:m”> )

<qum” V.

the constants ®(V',l’”) and 9t(l”",l) being different from
zero only for I'=10"+1 and !"=1I41. The well-known
quantities

-1, mt1|ay|lmy=m|ax|l—1, m=£1)
= (IFm)(—1Fm) ]2,
(-1, m|a,|lm)y={,m|a.|l1—1, m)
-

D m | ay|lm),

(11

where a4 =a,%1a,, are improperly so written because
they are not the matrix elements of the components of
the vector a; they are only proportional to them. The
notation used here supposes the multiplicative factor,
which depends on /, is included in the constants ®
and 9.

One can show that 9t(l—1, ) =0. In effect the relation

<Yz—1

becomes, for m=0,

l__

N 2 2)1/2
Rz+1yl> N(A—1,0) (E—m2)

| 1
<Yz-—1° — ——Yz°>=l91(l—1,l) ,
ozl Ri+t

Z

and, from the formula® for the gradient or from the
derivatives of the spherical harmonics given, for in-
stance, by Stevens,” one finds

1
m(il—-1,0)= ;;2'

x[l(?—i>llz~ @A+1) a2V 10| V| Yz°>] =o0.

The matrix element (9) can then be written

1
<Yl:m Oyu R—l—lylm =1//,Z,:nu K(l ,l ,l)
X m! | ay |V YV m'" | a, | Lm), (12)

where K(¥', /" 1) =@, 1")3 (" J).
¢ M. Rotenberg, R. Bivins, N. Metropolis, and J. K. Wooten,
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The only nonzero constants for our problem are
K(273;2)7 K(4J3)2)’ K(4>574)’ K(6y5}4)) K(6a7$6))
K (8,7,6). Their explicit forms can easily be found but
they are not necessary for the present analysis.

We can then transform (8) because the matrix
elements appearing in it are linear combinations of the
matrix elements (9) or (12). To do this transformation,
we use the relation

0 (Pa:b:ﬁ) = Z Auy (Pa:b;ﬂ)ouv )

where the Ay, (T's,0,8) are specific for a group and are
defined by

T(Pa:b:ﬁ) =Z Auv (Pa,b,ﬁ)auav ,

T (T«,b,8) being the components of the tensor obtained
from tensorial product of a polar vector a by itself.
Then, Eq. (8) becomes

47rgjs
Ve, T oa,b) = —r'u,
2141

X { Z K(l7 l+ 177 l) g (Z)Phha, 5 0.7'80;¢j30)

XL 2 Ma(Ta )Y (LT1p,0") a0 | 141, ")

uvm

X({+1,m"au| Y (LT e,0,8)) 1+2 K (142, 141, 1)

XY (I42,T15,0" 5 050, $5s0)[ 2 Muo(Tas,8)

XY (142, Ty,; 0" | a, | I+1, m")

X1, m" |au| ¥ (T aya,6))1}.  (13)
The expressions inside the brackets appearing in
Eq. (13) depend only on the symmetry and can easily
be evaluated for any group. The multiplicative factors
associated with these expressions depend on the
particular shell considered but they are independent
of the representation T', and of the indexes @ and b.
It is then possible, for a fixed value of /, to eliminate
these multiplicative factors between the various
equations obtainable from Eq. (13) for various values
of the indexes a, @, b. This elimination gives linear
relations between the parameters V,(Z,I's,a,b) associated
with fixed value of /, and these relations depend on the
symmetry only. The true dynamic parameters, being
obtained from a sum of the values of V,(J,I's,a,b) over
the shells, are related by the same relations. ke
The number N, of the parameters V (I,T',a,b) can be
determined from the reduction of the D; representation
in terms of the irreducible representations of g. Let

Jr., The 3-j and 6-j symbols (Technology Press, Cambridge,
Mass 1959).
1K W. H. Stevens, Rept. Progr. Phys. 30, 189 (1967).
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TaBLE I. Number of the various parameters defined in the text for some common point groups.
Point Ng . N, N, II N;
group =2 =4 1l=6 Total =2 1=4 I=6 Total =2 I=4 1I=6 Total =2 1=4 I=6 Total
Or 0 1 1 2 2 4 5 11 1 2 2 5 1 1 1 3
Dy, 1 1 2 4 5 6 11 22 2 3 4 9 1 2 2 S
Csn 1 1 3 5 9 11 21 41 2 4 6 12 1 3 3 7
Cs 1 2 3 6 8 14 20 42 3 5 6 14 2 3 3 8
Ca 1 2 2 5 6 11 15 32 3 4 5 12 2 2 3 7
this reduction be IILFRELATIONS BETWEEN STATIC AND
DYNAMIC PARAMETERS
D=3 #1als. ) . . .
a There exist relations between static and dynamic

Equation (6) shows that the number of the parameters
V (I,Ta,a,b) is, for fixed ! and «, equal to the number of
couples (a,b). a can take 7, values, while b can take
(0a+n14+722) because the components of the tensor
ouy belong to the sum (Do+ D1+ D2). The number of
couples (a,b) is then 71, (#oa+71a+7%2,). For the same
reasons as in the static case, I can take only the values
l=2, 4 for iron-group ions, and /=2, 4, 6 for rare-earth
ions. Thus, for the last case we have

Z Nia (n0a+n1a+n2a) .

a,l=24,6

N,=

The number of the multiplicative factors considered
above is equal, for each value of /, to the number of the
linear combinations of the spherical harmonics of order
! and I42 belonging to the trivial representation I'y,.
The total number of these factors is then

NY= 2% (m1+ns1,).

1=2,4,6

N{' is also the number of the independent parameters
and (Ny—N7) is the number of the relations obtained
with the method indicated. Table I gives the values of
N, and N/’ for some common point groups.

To obtain the relations between the dynamic param-
eters for a given group, it is useful to introduce the
operators O(D,,0), with De=Dy,, D1y, Day, which are
the linear combinations of the operators O, belonging
to the representation D, of the rotation-inversion group.
The operators are given by

0 (Dog) = (1/V3)[R:Vo+3 (R V-+R-V,)
0(D1,,0) = (1/2V2) (R_V, —R,V_),
0(Dyy, £1)=5(RyV.—R.Vy);
0(D24,0) = (1/4/6)[2R.V.—5 (R, V_+R_V,)],
O(Dgg, £1)=3(R.V.+R.Vy),
O(Dgg, =2)=3R,Vy;
and their matrix elements are easily obtained using
Egs. (11) and (12). Before going to the calculation for

the O; group, we now show that some of the N/
dynamic parameters are related to static parameters.

parameters because the differential operators associated
with the trivial representation act like a constant

O(T,0) = =u(d). (14)

do (I‘Ig’b)

In particular, the operator associated with the trivial
representation arising from the representation Dy, is
simply (1/v3)(R-grad) and the corresponding constant
w(d) is —(+1) 3.

Equation (8) is simplified when one uses the form of
O(T'14,0) given by Eq. (14). We then obtain

4q;

dwqjs
Vs (Z;Pm;a:b) = ;lnsﬂ (b)
20+

1
Y (,T10,a; Ois0,$s0) -
L1
780

On the other hand, the static parameters 4 (I,T'14,a)
defined in Eq. (2) can easily be calculated from Eq. (5).
The contribution of the shell s is?

41rq js
1’l1’ls
2 Rjgttt

As(l)Fla;a)z (15)

Y (Z’Fla)a’ 5 0f80)¢1'80) .

The comparison between the two last equations gives
the relations

V(lyrl(ha;b) =.“'(b)A (larlu)a) .

The number of these relations is equal to the number
of the static parameters Ng=>_; 7,14

Finally, the number of new parameters necessary to
describe the dynamic problems is Ny=N—Ng. The
table gives the value of Nr for some symmetry groups.

These relations cannot be strictly compared to the
relations proposed by Orbach?® because the latter were
phenomenological and they related @/l the dynamic
parameters to the static parameters. The numerical
factor u(d) can be important (see Sec. IV) as was
pointed out by Huang.®

8 This formula simplifies the calculation for the parameters
A (I,Ty4,e) if a particular approximation, like the point-charge
model, is used.

¢ C.-Y. Huang, Phys. Rev. 139, A241 (1965).
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IV. APPLICATION TO O, GROUP

For the particular case of the O, group, there are
N,=11 parameters, as the table shows. The two
parameters associated to /=2 are proportional because
K(2,3,2)=0. We then have
V, (Z,Pag) =%7!‘%‘,,7’%’!,]{(4,3,2)Y(4,P10,0j30,¢j30)

X 2 Auv(rﬂmoxy(‘hrln)lavly'o‘m”)

u,v,m’’

X(Ya"‘” [ au' Y(Z,P39,0)> )
Vs (Z,Psg) = %WstfznaK (4,3,2) )4 (4,I‘lg’0j30,¢j30)
X Z )\uv (F50,0)<Y(4':P10) Ia” l I/sm”

u,v,m’’

X (Ysm” Ia'u, Y(Z:F5070)> .

From the explicit form of the ¥V (/,I'.,8) and of the
Aus (Tay3) which can be found, for instance, in the tables
of Griffith® we find

V(2,T3,)/V (2Ts50) =1.

For the parameters associated to /=4, one can find
two relations. Denoting

1= Z (4797‘31’4/9)71/3[{ (475:4) Y(4;P10 5 0i801¢1'80) ’

I/=% (47"91'3‘10/9)”8[{ (6,5,4)Y (6,T'1; Bjs0,$3s0) »

we find
V(4,T1,) = (55/V3)Is,
V (4,Ts,) = —4(35/6)13,—O(\/5)I/,
V(4,T4,) = —11(10/3)121,,
V(4,Ts,) = (70/3)21 ,—12(+/5)I <.

Eliminating 7, and 7/, we obtain
V(47I‘1l7) = (%)1/211(4;1‘40) ’
3V (4,Ts50)+ (1)"2V (4,T'4,) =4V (4,Tg,) .

For the parameters with /=6, we need an invariant
form of the spherical harmonics with /=8. This form is

Y (8,I'y,) = (33/64)"2Y '+ (7/96) (V' + V™)

+(65/384) 3 (Vs*+V5~%).
Denoting

Ts=3 (4mq;s7%/13)nK (6,7,6)Y (6,T'1; Osso,iso) »

I =% (4mq;s%/13)n.K (8,7,6) Y(6,T14; 8is0,0500)

10 J.S. Griffith, The Theory of Transition Metal Ions (Cambridge
U. P., New York, 1961).
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we obtain

V(6,I'1,) =35V3T,
V(6,P3g) = (\/42)]6+6(\/77)[6, ’
V(6,T'4) =15(/7N)Is,

V (6,I's4,a) =5 (105/2)12[ 4,

V(6,T's4,0) = —3(231/2)"2L+16 (/)14

and also the relations

V(67F10) = (7/3)1/2V(6>I‘40) =3(14’/5)1/2V(67r5ﬂaa’) 3
(13/4/5)V (6,T'55,0)+3(/11)V (6,'5,6) =8V (6,Ts,) .

The relations between static and dynamic parameters
for the On group are

V(4:F10) = (5/\/3)‘4 (4>P10) ’
V(6;P1L7) = (7/\/3—)“4 (6yP10) .

As the table shows, only three new “‘parameters” are
necessary to describe the first-order dynamic coupling,
We have calculated in Ref. 4 the parameters V (1,T4,a,b)
for Oy symmetry with the point-charge approximation
and up to the fourth neighbors. It is easy to see that the
results verify all the above relations.

V. COMMENTS AND CONCLUSION

For the calculation of the relaxation times, as well
as for the evaluation of static stresses, qualitative
considerations were generally used to estimate the
various dynamic parameters®® or use was made of
particular models, such as the point-charge model, to
calculate them. The comparison between the calculated
value and the experimental results was then unable
to show where the origin of the disagreement is. This
work, reducing notably the number of the independent
parameters, permits one to write the relaxation times
as functions of these parameters; and, when the
experimental informations are sufficient, it will be
possible to deduce the value of the parameters from
the results, as for the static case. The comparison with
the calculated values will then be more significant.

This reduction of the number of the independent
dynamic parameters has a more fundamental meaning
than the inherent reduction in using the point-charge
model for the ligand ions. With this model, the mean
value of the radial distance of the magnetic electrons
(r*) and the distance from the central ion to the ligands
R, appears as parameters. But it is clear that the number
of the R, (which must be considered as independent
because the translational symmetry can be perturbed
around the magnetic ion) depend on the number of
ligands used for the calculation. We point out that, on
the contrary, the relations connecting the dynamic
parameters were obtained using only the point-group
symmetry. They then remain valid even with a dis-



3582

tortion of the lattice by the magnetic ion if this dis-
tortion leaves the symmetry unchanged.

We also note that these relations are also correct in
the “overlap” approximation for the covalency, be-
cause as long as only Coulombian energy is considered,
the Laplace equation becomes then V2V =4mrp, p being
the spherical charge density, and only the radial part
of the expansion (1) is modified.!! Obviously, if exchange
forces are included, our description is not valid.

1t This point was called to our attention by Dr. D. K. Ray.

R. BUISSON AND M. BORG 1

In addition to the reduction of the number of param-
eters, this work establishes formulas [(13) and (15)]
which, once the standard combinations ¥ (I,T's,¢,8) and
T(T's,b,8) are known, gives, for any environment, the
values of the parameters with a minimum amount of
calculation.
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Three methods have been used to predict paramagnetic-resonance line intensities in the spectrum of tri-
valent Cr® in sites of tetragonal symmetry in MgO. The methods are: numerical diagonalization of the
Hamiltonian matrix, perturbation theory, and a technique involving the magnetic field induced at the
nucleus by the electron spin. Experimentally observed line intensities are compared with the calculated in-
tensities. The induced-field method is found to adequately describe the spectrum and to agree very closely
with results from numerical diagonalization of the Hamiltonian. Some small discrepancies in line positions
are observed which imply an inaccuracy in the usual axial-field spin Hamiltonian.

I. INTRODUCTION

HE angular dependence of transition probabilities

in electron paramagnetic resonance (EPR) be-
comes complicated when the applied magnetic field
and crystalline electric field compete as a quantization
axis in the presence of a hyperfine interaction. Addi-
tional transitions are observable because the states
may be mixed by matrix elements of the hyperfine
interaction and crystal field operators. The magnetic
dipole selection rule (AM=41) is valid if applied to
the base states |Mg,Mr)=|Mm), but breaks down
completely at some orientations if applied to the mixed
states. This results in the appearance of so-called
forbidden hyperfine lines in the EPR spectrum. For
the case of small crystalline field splittings, adequate
explanations of the existence of these forbidden tran-
sitions using perturbation techniques have been given
by previous authors,!? particularly for the ions of
manganese and vanadium.

For the cases where the crystalline field splitting is
comparable to or larger than the Zeeman splitting, the
angle-dependent spectrum is very complicated and only

1 Work supported by the National Science Foundation.

* Present address: Bell & Howell Research Laboratories,
Pasadena, Cal. 91109.
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direct diagonalization of the full Hamiltonian is ade-
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